Станислав Григорьев

3.8. Спиральные Шланги. Развитие технической системы.

Человечество знакомо с трубами давно. Их изготавливали из всех возможных материалов. По сути, труба это оболочка для продольной транспортировки.

Полимерные трубы начали существование в конце 30-х годов прошлого века. Напомню что, первое промышленное производство одношнековых экструдеров началось в 1935 году, а двух шнековая машина изобретена только в 1937 году итальянцами Columbo & Pasquetti. за основу этой разработки взята тестомесильная двух шнековая машина и возможно, по аналогии с макаронами, сделан и ПВХ шланг. А в 1939 году начался выпуск электрических проводов в ПВХ изоляции. Подробно смотри История пластиков

Первые трубы ПВХ сделаны из мягкого ПВХ по той причине, что выпускаемый в то время ПВХ настолько жестким, что перерабатывать без пластификации было не возможно.

Мягкие шланги ПВХ с одной стороны удобны подвижностью, но обратная сторона мягкости это низкая прочность. Для упрочнения поместили шланг внутри пружины — подвижность осталась, а прочностные характеристики выросли. Но со временем, под действием давления шлаг растягивался и «впивался» в пружину. Для вакуумных систем пружину размещали внутри шланга, но результат оказался одинаковым — спираль и ПВХ шланг оказывались на одном уровне. Тогда решили изначально размещать пружину в теле шланга. Так и получили универсальный и для давления и для вакуума Спиральный Шланг.

У Спиральных Шлангов жизненный цикл относительно короткий. Для повторной переработки необходимо разделить металлическую спираль и ПВХ оболочку. Но, если для производства таких шлангов имеются готовое промышленное оборудование, то для разборки шлангов оборудование никто не разрабатывает или правильно сказать ни кто не заказывает оборудование для разборки спиральных шлангов с целью последующей переработки. Да и ни кто не проводит кампанию по скупке отработанных спиральных шлангов для последующей переработки.

Причин этому явлению две: наше отношение к окружающей среде и налогообложение. По поводу налогообложения скажу в конце статьи.

Прочностные характеристики металлической спирали в сотни раз превосходят прочностные характеристики ПВХ оболочки. Для выравнивания этих характеристик спираль делают как можно тоньше, что приводит в конечном итоге к прорезаннию тонкой проволокой спирали оболочки. Что бы выровнять эти характеристики начали делать спираль из материала с такими же, как и оболочка, характеристиками — из жесткого ПВХ.

Сегодняшний Спиральный Шланг состоит из двух частей жесткой ПВХ спирали и мягкой ПВХ оболочки. Рассмотрим эволюцию каждого элемента по отдельности.

Жесткая ПВХ спираль. Развитие технической системы.

Рассмотрим нагрузки, которые испытывает спираль при работе. Из курса сопромата помним распределение нагрузок по сечению защемленной балки. Слой со стороны нагрузки под действием последней растягивается, слой с противоположной стороны — сжимается, а слой по середине не испытывает ни растягивающих ни сжимающих нагрузок. И первое решение, которое напрашивается это превратить спираль в трубу без внутреннего слоя, который не несет нагрузку — таким образом увеличить диаметр спирали, без увеличения веса.

Спираль должна иметь высокий коэффициент температурной деформации — при нагревании на солнце спираль не должна размягчаться. Это значит, что температура стеклования материала должен быть максимально высокой и проплавить такую гранулу можно лишь при 210°С. Перед тем, как совместить расплав спирали с мягкой оболочкой, которая плавиться при 160°С, спираль необходимо охладить до этой температуры. В противном случае мягкий ПВХ оболочки «закипит» при совмещении со спиралью и при напоре/вакууме порвется на месте дырочек — увидите множество фонтанчиков.

Но согласно «Законам развития технических систем» спираль должна перейти по схеме «моно — би — поли». Переход на Би систему это спираль, сделанная в форме 8 или двойная спираль в которой появляется два растягивающихся слоя и два сжимающихся слоя. При сохранении веса погонного метра такая спираль несёт нагрузку в 10 раз большую, чем моно спираль.

Переход к Поли системе означает изготовление спирали в виде троса из тонких ПВХ нитей переплетенных и скрученных между собой. При условии, что такие нити имеют высокую вытяжку и трение такая спираль, при сохранении веса погонного метра несёт нагрузку в 100 раз большую, чем моно спираль.

При правильном изготовлении сцепление между слоями жесткого и мягкого слоев в обоих случаях возрастает.

Мягкая ПВХ оболочка. Развитие технической системы.

Оболочка испытывает нагрузки аналогичные спирали и дополнительно растягивающие нагрузки от давления или вакуума. Оболочка уже перешла к Би системе — при изготовлении один слой накладывается на другой. Переход к Поли системе к большему количеству слоев с разными свойствами. Так для получения мягких свойств при низких температурах мягкость необходима только на верхнем и нижнем слое оболочки, а центральная часть — та, что противостоит давлению может быть относительно жесткой. Оболочка может состоять из четырех и пяти слоёв, с проницаемыми или не проницаемыми слоями. Основное правило для оболочки все слои должны быть совместимы с ПВХ для последующей переработки.

Производство, утилизация и налоги.

Зимний режим Горячего смесителя

Наша планета Земля участвует в сложном процессе эволюции вселенной, периодически меняя тепловые режимы планеты. Кода в эти циклы смены режимов вмешивается Человек последствия становятся непредсказуемыми.

Зимний период начался по расписанию в ноябре. Но начался не с морозов, а с теплых и влажных дней и холодных и влажных ночей, и своей излишней влагой внес дисбаланс в режим приготовления смесей ПВХ. Судя по запросам, эта проблема коснулась всего европейского континента, от Новосибирска до Англии.

Раньше, когда баланс температур смещался в отрицательную сторону, вся влага из помещений в которых находятся наши производства конденсировалась на улице в виде снега или хотя бы луж, которые при низких температурах не испарялись. Когда изменился температурный режим, массивные помещения охлаждаются в ночной, холодный период и конденсируют на холодных конструкциях влагу в теплый дневной период.

В наших производственных помещениях стало влажно. И эта избыточная влага сильно влияет на весь технологический процесс.

Ночью остывают не только массивные конструкции помещений, но и тонны химических ингредиентов композиции ПВХ. И как только вы их открываете, влага из воздуха начинает конденсироваться на них, образуя гидратную пленку, даже на гидрофобизированных компонентах.

На что это влияет.

Для работы в системе ПВХ мы купили гидрофобизированный мел. Если мел свежий, стеаратная группа на поверхности активна и реакционно способна. Если мел пролежал на складе, простоял в порту и т.д. стеаратная группа становится менее активной. Это похоже на процесс с мытьем посуды: поели — помыли без моющих, поели — постояло — помыли нужны моющие, поели — постояло сутки — нужна металлическая щетка, что бы отмыть.

Когда по верх стеаратных групп ложится монослой влаги, он вообще блокирует полярные связи стеарата кальция на поверхности мела, и ПВХ не образует связи с поверхностью мела. В результате мел отдельно, ПВХ отдельно, и как следствие повышенная хрупкость изделия.

В горячем смесителе мы нагреваем смесь выше температуры испарения влаги и испаряем большую часть гидратной пленки. Замечу, что полностью избавиться от гидратной пленки не удастся никому и связано это со структурой самой воды.

Испарившееся влага выходит через фильтры горячего смесителя и дополнительно этот процесс ускоряется продувкой горячего смесителя осушенным воздухом. О правильной загрузке горячего смесителя и расчете фильтров смотри Смешение ПВХ для экструзии жестких изделий

Итак: Смесь нагревается, влага испаряется, осушенный воздух в количестве 10 — 15 объемов смесителя ускоряет этот процесс, НО ЕСТЬ ОДНА ПРОБЛЕМА.

ХОЛОДНАЯ КРЫШКА ГОРЯЧЕГО СМЕСИТЕЛЯ

Крышка горячего смесителя отливается из алюминия и имеет хороший коэффициент теплопроводности. Часть тепла, которое образуется в горячем смесителе, отводится через крышку и крышка имеет температуру выше температуры воздуха в помещении, но ниже чем в смесителе, и соответственно ниже температуры конденсации насыщенного пара.

Наивысшая температура в смесителе находится в точке воздействия лопастей на смесь. Лопасти и смесь соответственно, вращаются и таким образом весь объем смеси участвует в нагревании и это означает, что и испарение влаги происходит по всему зеркалу смесителя равномерно.

Поднимаясь в верх в виде упругого пара влага пытается выйти в маленькое отверстие воздушного фильтра. Но, та часть влаги, которая во время восхождения встретилась с холодной крышкой, отдаст свое тепло крышке и сконденсируется на ней. Крышка передаст полученное тело в атмосферу цеха и охладит себя.

Процесс повторяется весь период нагревания смеси. Маленькая капля образовавшаяся при конденсации прара начинает расти подпитываемая следующей порцией пара, и растет до тех пор, пока силы внутреннего сцепления (силы Ван-дер-Ваальса — силы межмолекулярного и межатомного взаимодействия с энергией 10—20 кДж/моль.) не уступят силам гравитации. После этого капля оторвется от крышки и возвращается в смесь, повторяя этот круговорот до тех пор, пока либо весь пар не выйдет наружу, либо крышка нагреется намного выше температуры конденсации.

Если бы во время смешения, мы сняли крышку и натянули вместо нее матерчатый фильтр, то по сути ни чего не поменялось. Он стал бы моментально мокрым. Испарение влаги с влажной ткани намного больше охладило ткань и сконденсировало больше капель на внутренней поверхности фильтра.

Поэтому единственно правильное решение в этом случае — перевести Горячий смеситель в Зимний режим работы — хорошо утеплить крышку смесителя. Только в этом случае упругий пар поднимется к горячей крышке и не имея возможности сконденсироваться займет очередь на выход из смесителя через фильтр.

Часть этой проблемы можно снять через изменение рецептуры, добавив к примеру спирты с послудущей этерификацией и вакумированием, но снять можно только часть проблемы. Полное и более правильное решение состоит из применения обоих вариантов.

Почему изделия ПВХ получаются хрупкими

Три ситуации: Недоплав, Переплав и Влага, а результат один — изделие получается хрупким.

Если при экструзии изделия  из ПВХ экспозиция температуры или давления или время монолитизации расплава были недостаточны, изделие получиться хрупким. Если на первой зоне в ПВХ была влага, а дегазация была слабой (больше  -0,5 Бар.), изделие получиться хрупким. Если материал ПВХ, во время экструзии, был перегрет и в результате смазки закипели, изделие получиться хрупким.

На самом деле, нарушений технологического режима переработки ПВХ может быть много, и только ОДИН технологический режим правильный.

Только один режим дает правильную реологию и как следствие правильно сформированную структуру материала.

Для изделий используют ПВХ с константой Фикентчера 65 — 70 потому, что удерживает изделие ПВХ от разрушения силы Ван-дер-Ваальса — силы межмолекулярного и межатомного взаимодействия с энергией 10—20 кДж/моль.

Количество таких связей пропорциональна площади взаимодействия единичной частицы ПВХ, площадь пропорциональна длине, а длина константе Фикентчера. В сравнении с низкомолекулярной частицей ПВХ высокомолекулярная в 5 — 10 раз длиннее.

Когда изделие прозрачно или мало наполнено полярный ПВХ образует прочные связи с подобными структурами. Когда изделие высоко наполнено, расплаву ПВХ сложно обтекать такие структуры и образуются структурные дефекты — полости незаполненные материалом. Внутри таких дефектов не работают силы Ван-дер-Ваальса — материал ничто не держит. Чем меньше структурных дефектов, тем больше материала вступает во взаимодействие, тем выше плотность материала и соответственно больше энергии необходимо приложить для разрушения материала.

Когда полученный удельный вес ниже расчетного, всегда стоит задуматься над всем процессом.

Разберем три случая описанных в начале статьи.

НЕДОПЛАВ.

Недоплав это состояние материала, при котором из-за недостаточного давления или низкой температуры и как следствие высокой вязкости или малого времени экспозиции не произошло МОНОЛИТИЗАЦИЯ РАСПЛАВА. Удельный вес такого материала получиться меньше расчетного, из-за наличия структурных дефектов, а они как мы увидели раньше, сильно уменьшают прочностные характеристики материала ПВХ.

ПЕРЕПЛАВ.

При превышении температурной экспозиции смазки и другие добавки с низкой температурой кипения закипают и начинают газить. Эволюция углеводородных смазок примерно такая: твердое вещество — жидкость — газ — полное разрушение. Газ плохо выходит из расплава и создает пустоты. А как пустоты уменьшают прочностные характеристики вы уже знаете.

ВЛАГА.

На практике вы можете столкнуться с двумя случаями с влажным материалом и мокрым материалом. Материал с которого течет вода называем мокрым. Весь остальной материал ВЛАЖНЫЙ.

Когда мы говорим о влаге, мы говорим о гидратной пленке на поверхности всех компонентов ПВХ и с гидрофобизированной и с гидрофильной поверхностью.

«Влажный материал» — материал имеющий на поверхности толстую гидратную пленку, которая не удалилась на предыдущих стадиях обработки. Например, паспортная допустимая влага многих материалов 0,3%. Это означает, что 100 кг. смеси содержит 30 грамм влаги, и при нагревании до 190°С эта влага увеличит объем материала упругим паром на 60 — 95 литров на каждые 100 кг. изделия. Прочностные характеристики изделия будут низкими.

Высокий вакуум уберет большую часть влаги и исправит ситуацию. Если вакуум низкий газ не сможет выйти из вязкого материала.

«Сухой материал» — материал имеющий на поверхности тонкую гидратную пленку, к примеру 0,03%. Это означает, что 100 кг. смеси содержит 3 грамма влаги, и при нагревании до 190°С эта влага увеличит объем материала упругим паром на 6 — 10 литров на каждые 100 кг. изделия. Вроде и немного, но даже высокий вакуум не сможет справиться с такой влагой из-за очень мелких размеров пузырей, там еще и смазки подгорят и внесут свой вклад, и оператор экструдера не правильно установит режимы.

ВЫВОД

Все три причины работают одновременно. ВСЕГДА. Поэтому технологический процесс должен быть рассчитан, описан, отработан. Только тогда можно говорить о качестве крупнотоннажного производства.

А если нет, то нет.