+38 097 2600100

ОБРАТНЫЙ ЗВОНОК

Украина, Харьков, ул. Соколова 26А
stgrig stalexgrig@gmail.com

Смешение ПВХ для экструзии жестких изделий

После того, как вы приготовили смесь — все остальные операции только ухудшают качество композиции. 

 

ВНИМАНИЕ: Высокая скорость это технологическая необходимость,
ПОЛЬЗА от которой в виде быстрого истирания компонентов
и нагревания смеси
ПРЕВЫШАЕТ ВРЕД
в виде гравитационного расслоения смеси


Процесс изготовление изделий из ПВХ состоит из нескольких этапов, каждый из которых решает свои, строго специфические задачи.
В общем процессе изготовления изделий можно выделить четыре отдельных технологических процесса, в ходе которых решаются следующие задачи:
— Смешение компонентов смеси ПВХ, с достижением максимальной гомогенизации и последующей стабильности смеси (отсутствие расслаивания);
— Пластикация и диспергирование агломератов частиц ингредиентов смеси ПВХ до их исходного размера, при котором пластицированная смесь приобретает наиболее эффективную структуру и форму, и позволяет получить правильную морфологию изделия;
— Удаление летучих компонентов, в том числе мономеров ПВХ, влаги и воздуха;
— Формирование изделия в конечную форму, ее стабилизацию и охлаждение.
В этой статье мы опишем первую и частично вторую задачи, напрямую связанные с процессом смешения композиции ПВХ для производства жестких изделий методом экструзии. Более подробно вторую и третью задачи опишем в статье Коротко о свойствах ПВХ, в разрезе экструзии жестких композиций и Правила нормальной переработки Гранулы ПВХ.
Первое, что нам необходимо для экструзии изделий из ПВХ – отработанная рецептура. Неизвестная рецептура тоже будет работать, но будет дороже и/или не будет давать качества и/или вообще не будет формироваться и/или обладать необходимыми потребительскими качествами. Подбору правильной рецептуры и правильных ингредиентов посвящена отдельная статья Рецептура.
А по сему, будем считать, что у вас отработанная рецептура и качественные ингредиенты, проверены термодатчики (иначе смесь может сгореть при нагреве свыше 130°Ц.) и не изношены лопасти на смесителе и задача этой статьи описать технологический процесс смешения компонентов смеси ПВХ.
Качество готового продукта экструзии ПВХ на 30% зависит от Рецептуры, на 30% зависит от правильности приготовления смеси и грануляции (приготовление смеси и грануляция вместе называется копаундирование) и на 40% зависит от экструзии, формирования изделия и его последующей калибрации. А цель у всех трех этапов одна – получить изделие с правильной структурой. Только в этом случае мы сможем получить изделие с хорошими параметрами по ударной стойкости, износостойкости, устойчивости к воздействию атмосферных явлений, низкотемпературной прочностью, с однородной поверхностью и многими другими факторами.
Даже если вы произвели загрузку компонентов в правильном порядке (система ПВХ и внутренние смазки ⇨ смешение до 80°Ц. + наполнитель ⇨ смешение до 90°Ц.; + горячий пластификатор ⇨ смешение + внешние смазки и красящая группа ⇨ смешение до 120°Ц. ⇨ выгрузка) в результате, на выходе из горячего смесителя, вы не получите дисперсию компонентов в ПВХ, только их механическую смесь, устойчивою к расслоению. И только после грануляции и последующей переработки в изделие вы получите необходимую дисперсию и ПВХ композиция сможет проявить свои качества в полной мере.

Что значит получить максимальную дисперсию всех компонентов в ПВХ?
Когда мы засыпаем компоненты смеси в смеситель, они представляют собой смесь микрогранул и частиц компонентов с размерами от 50 мкм до нескольких миллиметров. При этом микрогранулы ПВХ представляют собой свободно текущие частицы порошка, размером от 100 до 250 мкм, сформированные агломерированными первичными частицами ПВХ размер которых примерно 1 мкм. Начинается такая агломерация при полимеризации мономера винилхлорида, продолжается при его сушке и транспортировке за счет электростатических сил и сил гравитации. Аналогичным образом дело обстоит и со всеми остальными компонентами.
Поэтому, когда мы говорим о дисперсии, понимаем под этим разрыв агломерированных частиц ПВХ до размера первичных частиц и равномерное распределение между ними всех компонентов смеси разорванных до элементарных частиц, путем приложения механической и температурной деформации. Плохо агломерированные частицы ПВХ неправильно распределят между собой смазки, стабилизаторы, красители и это проявятся на поверхности в виде поверхностных дефектов типа точек, «рыбий глаз», гели, трещины и т. д.. Все эти дефекты — плохое смешение компонентов. Последующая грануляция смеси полностью устраняет указанные дефекты. Поэтому гранула ПВХ — наилучший способ переработки ПВХ в изделие.
Под механической деформацией в процессе смешения компонентов ПВХ в вихревом скоростном смесителе понимаем воздействие лопастей смесителя, имеющих три угла атаки в верхней части лопасти и два угла атаки в нижней плоскости. Задача верхних углов атаки – разбить, подбросить и закрутить, нижних оторвать от дна смесителя и подбросить над лопастью. Неправильная геометрия лопастей при изготовлении, износ в процессе работы или не правильная установка в смесителе — прямой путь к бракованной продукции. Но все эти проблемы исчезают при грануляции компаунда. Определить износ лопастей очень просто — если потерялись острые кромки перехода от одного угла к другому это сильный износ и лопасти нужно перетачивать, если лопасти скруглились — нужно менять.
В результате механической активации, внутреннего трения и трения о стенки смесителя компаунд нагревается. Обычно его нагревают до температуры 120-130°Ц. Этого достаточно, так как эта температура выше чем температуры:
• плавления восков – воски могут нормально распределиться;
• температура стеклования – диффузия стабилизаторов и пластикаторов в ПВХ, после точки стеклования диэлектрическое сопротивление ПВХ падает на 4 — 6 порядков, ПВХ теряет электростатический заряд и зерна начинают истираться, что ведет к частичному разрушению агломератов;
• кипения воды – вода испарится и ее можно вывести из смеси;
• релаксации агломератов частиц ПВХ – за счет уменьшения количества свободных пор — увеличить насыпной вес готовой смеси для увеличения наполнения шнеков (о проблеме наполнения шнеков смотри Правила нормальной переработки Гранулы ПВХ) и Проблема заполнения шнеков смесью);
• Диффузии мономера ПВХ из смеси.
Сам процесс смешения компонентов смеси в вихревом скоростном смесителе состоит из шести этапов:
1. Загрузка компонентов;
2. Распределение компонентов смеси по объему смесителю на низкой скорости ;
3. Истирание и нагревание компонентов на высокой скорости;
4. Смешение и выгрузка из горячего смесителя на низкой скорости в холодный смеситель;
5. Охлаждение смеси и выгрузка в зону релаксации смеси;
6. Релаксация и созревания смеси.
Загрузка смеси. Правильно проводить посредством шнековых погрузчиков пневмо-системы и подачи компонентов насосом. Для того, что бы загрузить компоненты в правильном порядке: система ПВХ и внутренние смазки ⇨ смешение до 80°Ц. + наполнитель ⇨ смешение до 90°Ц.; + горячий пластификатор ⇨ смешение + внешние смазки и красящая группа ⇨ смешение до 120°Ц. ⇨ выгрузка; вам необходимо шнековые погрузчики отдельно для системы ПВХ и наполнителя, подача насосом жидких компонентов и пневмоподача наружных смазок и красителей.

Загрузка компонентов смеси из мешков в горячий смеситель ведет к повышенному износу оборудования, опасен для жизни (вылет мономера ПВХ (ЯД) при ударе о стенки горячего смесителя, физически тяжел (поднимание на высоту мешков по 25 кг.). При загрузке в емкость шнекового погрузчика высыпать компоненты следует через рассекающие сетки, мешки вскрывать аккуратно, не допуская попадания в смесь ниток и грязи с мешков, обрезков из ПП мешковины. (Нитка, попавшая в смесь имеет свойство наматываться на ось вала, вбирать в себя абразивные элементы смеси, нарушать чистоту обработки поверхности вала и в дальнейшем убивает сальник вала. Испорченный сальник вала пропускает в смеситель смазку подшипника, а в подшипник – мел, убивая при этом смеситель).
Распределение компонентов смеси по объему смесителю. Проводиться на низкой скорости. Гравитационное выравнивание компонентов смеси, необходимое для уменьшения нагрузки на двигатель при переходе на повышенную скорость. При недостаточном распределении главный двигатель горячего смесителя получает удар, что сокращает его ресурс.
Истирание и нагревание компонентов. Интенсивное перемешивание компонентов смеси на высокой скорости путем формирования тора из компонентов смеси, перенаправление части смеси в верхней точке в центр смесителя на отбойниках и формирование верхней крышки тора из перенаправленной и частично заторможенной части смеси. Смесь набирает электростатический заряд и объем смеси увеличивается в размере до достижения температуры стеклования (75 — 80°Ц.), после чего объем смеси уменьшается и начинается интенсивное истирание компонентов смеси ПВХ. Вот почему очень важно иметь на горячем смесителе два независимых контура заземления. При отсутствии заземления смесь начинает светиться от электростатических зарядов, и возможна интенсивная деструкция от жесткого УФ излучения вызванного такими зарядами. Бороться с электростатикой можно тремя способами: два независимых низкоомных контура заземления; ионизация воздуха с помощью электрических ионизаторов или радиоактивных источников (есть в старых дозиметрах или новых датчиках дыма); наилучший результат достигается при смешении в переменном электростатическом поле.

ВНИМАНИЕ: Высокая скорость это технологическая необходимость, польза от которой в виде быстрого истирания компонентов и нагревания смеси превышает вред в виде гравитационного расслоения смеси, при котором наиболее тяжелые компоненты смеси, такие как стабилизаторы, TiO2, CaCO3 выбрасываются наружу к стенкам смесителя, а легкие компоненты накапливаются ближе к центру.

Обязательно последний этап нагревания проводят на малой скорости до достижения рабочей температуры 120 -130°Ц..

Смешение и выгрузка из горячего смесителя в холодный смеситель. Как сказано выше СМЕШЕНИЕ производится на малой скорости смесителя и по достижению необходимой температуры производится выгрузка из горячего в холодный смеситель НА МАЛОЙ СКОРОСТИ. Контролируется по нагрузке на двигатель и звуку.
Охлаждение смеси и выгрузка в зону релаксации смеси. Производится до температуры 40-45°Ц. в холодном смесителе, который обычно, имеет минимум двойной объем от объема горячего, с целью срочной выгрузки из горячего, при необходимости. На практике целесообразно охлаждать одновременное две партии горячего смешения для ускорения процесса охлаждения путем большего использования площади холодного смесителя и с целью гомогенизации партий смеси.
Релаксация и созревания смеси. Охлажденную до температуры 40-45°Ц. смесь выгружают в промежуточную емкость и оставляют созревать в течение 24 часов. При этом за счет электростатической релаксации смесь уплотняется, насыпной вес увеличивается.
По насыпному весу можно частично судить о качестве приготовленной смеси. После холодного смесителя НВ смеси должен быть в пределах 725 – 790 гр./Литр, после созревания 770 – 990 гр./Литр.

Можно ли перерабатывать не созревшею смесь? Можно. Проблема не созревшей смеси в ее высоком электростатическом заряде. В составе смеси два основных (по объему) компонента ПВХ и мел. В трибологическом ряду ПВХ заряжается отрицательно, а мел положительно и вроде как должны электростатически приклеиваться друг к другу. Но мел для гидрофобизации обработан стеариновой кислотой, которая как и ПВХ заряжается отрицательно, а одноименные заряды, как известно, отталкиваются. Вот и получается, что не созревшая  смесь пытается всеми силами расслоится, налипнуть на любую поверхность и скомкаться — в общем произвести любые действия, которые помогут ей избавиться от избыточного электростатического заряда. Из за расслоения и низкой насыпной плотности  такая смесь очень плохо перерабатывается в изделие, образуя на поверхности множество мелких белых точек — агломератов мела, который быстрее чем ПВХ отдает заряд и слипается в агломераты. Но это справедливо для переработки смеси в изделие и полностью отсутствует при гранулировании смеси, так как при последующей переработки гранулы такие агломераты прекрасно растворяются в гомогенизированном потоке.
Теперь о двух ошибках, достаточно встречающихся при смешении компонентов ПВХ, и приводящих к серьезным проблемам при экструзии:
Неправильный расчет объема загрузки смесителя;
Герметизация горячего смесителя.
Неправильный расчет объема загрузки смесителя. Для правильной работы смесителя необходимо соблюдать технологический режим, который в части загружаемых объемов смеси, рассчитывается исходя из насыпных весов компонентов. Для нормального процесса смешения мы должны загрузить 0,4 – 0,7 объема смесителя. Если меньше – сильно удлиняется процесс нагревания, если больше смесь может сорвать крышку смесителя, и/или сформируется неправильный тор и процесс дисперсии не пройдет в необходимом объеме. Опять таки это в основном касается переработки смеси без гранулирования, так как гранулятор — это двухшнековый конический экструдер имеющий превосходные вымешивающие характеристики.
Для расчета насыпные веса компонентов берутся по минимальным значения с учетом того, что смесь в начале смешения приобретает сильный электростатический заряд и вспушивается. Для ПВХ берем насыпной вес 0,5 Кг./Литр, Кальцит – 0,9 Кг./Литр, остальные компоненты, имеющие разные насыпные веса и суммарную дозировку 10 Кг. Принимаем равными 10 литрам.
Пример: Смеситель 300 литров – полезный объем 300*0,7= 210 литров. Минус 10 литров комплекс – остается 200 литров. Если мы берем 75 Кг. ПВХ (три мешка – не надо взвешивать порции) – они занимают 75/0,5 = 150 литров, мы работаем с наполнение 50 мас. частей кальцита — 37,5 кг, которые занимают 37,5/0,9 =41,7 литра. Итого 150+41,7+10=201,7 литра. При таком расчете смесь будет прекрасно диспергироваться и получиться хороший результат. Но любой рабочий смесительного отделения захочет уменьшить количество смесительных циклов и увеличить производительность для чего в замес добавит 25 Кг. ПВХ и кальцита, соответственно, пойдет 50 Кг. (два мешка – опять таки не надо взвешивать) вроде как на пользу должно пойти, но 100 Кг. ПВХ займет объем 200 литров, 50 Кг. Кальцита займет объем 56 литров, плюс 10 литров остальных компонентов даст суммарный объем 260 литров. А это многовато. И, к сожалению, на многих предприятиях идут по такому пути «экономии» и получают отрицательный результат в виде поверхностных и других дефектов. Опять таки, это касается переработки смеси без гранулирования. Показателем неправильной загрузки смесителя будет низкий насыпной вес смеси.
Герметизация горячего смесителя. Все вихревые скоростные смесители работают либо с системой вакуумирования либо по открытой схеме через систему матерчатых фильтров. Влажность ПВХ и кальцита поступающего к вам в мешках около 0,3% по паспорту, но на практике может достигать до 1%. Будучи загружены в 300 литровый смеситель 201,7 кг. компонентов при 0,3% содержат в себе 0,6 литра влаги, которая при нагревании до 120°С в виде пара займет объем 170 литров и повысит давление в герметичном смесителе заполненном компонентами смеси примерно в два раза.
Если у вас прекрасно работает вакуумный насос – не проблема. Он успеет откачать испаряющеюся влагу. Если открытая система то пар выйдет через матерчатые фильтры, которые просто намокнут и будут влажными (при условии что площадь матерчатых фильтров уравновешена скоростью испарения жидкости с поверхности фильтра). Но если ваша система герметизирована, или вакуумный насос забит (плохо работает) – вы сразу увидите это на изделии в виде множества точек на поверхности (особенно под микроскопом), розовой смеси ПВХ от деструкции, матовой поверхности изделия из за выгоревших смазок и т.д. . Вслед за этим вас ожидает замена сальника приводного вала горячего смесителя, замена всех уплотняющих резин, и много, много брака. Горячий пар усиливает усталостную ломкость металла лопастей смесителя.
Признаками описанных выше явлений — частичная агломерация ПВХ-композиции в смесителе, в виде различных форм окатышей размером от 1 — 5 мм и точек и/или дырок на поверхности. Если вы обнаружили окатыши размером больше 5 мм, вплоть до размера 15 мм. — то, чаще всего, это работа модификатора перерабатываемости и его работа описана в статье Рецептура.
Но, даже выпарив влагу при горячем смешении, полностью от нее избавиться не получится, так как она постоянно присутствует в окружающем воздухе и конденсируется на холодных стенках холодного смесителя постоянно.

Рассмотрим пример. Температура воздуха в помещении 30°Ц. (может содержать до 30 гр/м.куб. влаги) влажность 90% значит точно содержит 27,36 гр/м.куб. влаги и точка росы для этих параметров 28,2°Ц. (можно поднять температуру охлаждающей жидкости до 30°Ц., но измерять температуру нужно на входе в смеситель и скорость охлаждения уменьшится в несколько раз) температура охлаждающей жидкости 15°Ц., объем холодного смесителя 600 литров и значит воздух находящийся в смесителе содержит 17 гр./м.куб. влаги. Каждый раз, выгружая из горячего смесителя 200 литров сухой смеси, мы вытесняем из холодного смесителя 200 литров воздуха, осушенного на холодных стенках, а выгружая из холодного остывшую смесь, засасываем 250 литров влажного воздуха, содержащего 8 гр./м.куб. влаги, добавляя ее к 17 гр./м.куб. изначальной влаги. И этот цикл повторяется каждый раз. Эта влага находит в смеси плохо гидрофобизированный мел и приклеивает его к холодным стенкам смесителя, ухудшая теплообмен между смесью и смесителем. Накапливаясь налипший мел в количестве 20 — 35 кг. обрушается и убивает замес. И что самое худшее – обрушение мела мы заметим только в экструдере по возросшей нагрузке на главный привод и полному браку продукции. Количество брака, которое мы получим – примерно 1.5 замеса. Частичные обрушения мела в этой ситуации происходят постоянно и приводят к появлениям множества точек на поверхности.
Что бы избежать описанной выше ситуации есть три варианта:

  • Добавлять гранулу ПВХ в смесь — очень распространенная ошибка (гранула уничтожает резинки запорных клапанов и они очень быстро выходят из строя);
  • Не опускать температуру охлаждающей жидкости холодного смесителя ниже 36,6 Гр.Ц. (точнее точки росы для температуры окружающего воздуха по таблицам );
  • Продувать холодный смеситель осушенным воздухом.

Получить осушенный воздух достаточно легко методом дросселирования — берем большой кислородный или от углекислого газа баллон, снизу ставим сливной кран, на высоте ¼ от низа тангенциально сверлим отверстие и вставляет дроссель диаметром до 1 мм. И через него подаем воздух в баллон. Осушенный воздух забираем из верхней части баллона и через электромагнитный пневмоклапан выгрузки (или параллельно ставим еще один) подаем в холодный смеситель. Открыли холодный смеситель на выгрузку – подаем осушенный воздух. Закрыли не подаем. Вот и все решении проблемы.
Меня иногда удивляют технически грамотные собственники производств по переработке ПВХ, не понимающих таких элементарных вещей. А такие ошибки, поверьте, не единичный случай.
Вкратце это достаточный уровень знаний для организации работы смесительного отделения. Этот технологический процесс необходимо организовать должным образом, потому, что он дает примерно 30% качества вашей продукции.
И наверно, по описанным выше причинам и с учетом нормы равной 1 ppm мономера винилхлорида за 8 часовой рабочий день, весь цивилизованный мир работает на грануле ПВХ, оставляя смешение и грануляцию специализированным предприятиям, которые благодаря своим научным разработкам получают изделия с удельным весом от 1,18 до 1.46 Кг./Дц.Куб., а реалии наших производителей — удельные веса от 1,53 до 1.8 Кг./Дц.Куб. и многие считают это экономически оправданным!!!
Давайте посчитаем вместе: Если сегодня стандартным считается удельный вес (при наполнении 50 ВЧ мела) — 1,6 кг/Дм.куб. то экономия при удельном весе 1.26 кг/Дм.куб. составляет 24 % за килограмм или 27% Дм. Куб. Такая экономия эквивалентна наполнению мелом до 100 ВЧ., при этом нет необходимости так часто останавливать экструдер для чисток.


Забыли пароль

Хотите зарегистрироваться
Добро пожаловать